

Extremal lattices.

Extremal lattices

Theorem (Siegel) Let $\mathcal{L} \subset \mathbb{R}^d$ be an even unimodular lattice. Then the length ℓ_{\min} of the shortest non-zero vector of \mathcal{L} satisfies:

$$\ell_{\min}^2 \leq 2 \left\lfloor \frac{d}{24} \right\rfloor + 2.$$

Definition: An even unimodular lattice $\mathcal{L} \subset \mathbb{R}^d$ is called extremal if this bound is attained, i.e.

$$\ell_{\min}^2 = 2 \left\lfloor \frac{d}{24} \right\rfloor + 2.$$

The ball with center x and radius r

$$B(x, r) := \{ y \in \mathbb{R}^d \mid |x-y| < r \}.$$

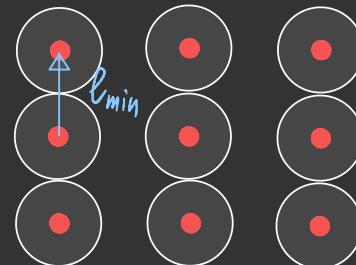
The sphere packing associated to a lattice $\Lambda \subset \mathbb{R}^d$

$$\mathcal{P}_\Lambda := \bigcup_{\ell \in \Lambda} B\left(\ell, \frac{\ell_{\min}}{2}\right)$$

Λ

The density of \mathcal{P}_Λ

$$\Delta_{\mathcal{P}} := \frac{\text{vol } B(0, \frac{\ell_{\min}}{2})}{\text{vol } (\mathbb{R}^d / \Lambda)}$$



Examples:

① $d = 8$

$$\ell_{\min}^2 \leq 2 \left\lfloor \frac{d}{24} \right\rfloor + 2 = 2$$

E_8 is an extremal lattice in $\dim 8$.

② $d = 24$

$$\ell_{\min}^2 \leq 2 \cdot 1 + 2 = 4$$

The unique extremal lattice in \mathbb{R}^{24}
is the Leech lattice.

Extremal modular forms

$\det \mathbf{K} \in 4\mathbb{Z}_{>0}$ $K = d/2$

Theorem: There exists a unique modular form $f \in M_K(\Gamma_1)$ such that its Fourier coefficients satisfy:

$$c_f(0) = 1, \quad c_f(1) = c_f(2) = \dots = c_f(\lfloor \frac{K}{12} \rfloor) = 0.$$

Recall:
$$f(z) = \sum_{n=0}^{\infty} c_f(n) e^{2\pi i n z}.$$

This modular form f is called the **extremal modular form**.

Moreover, $c_f(\lfloor \frac{K}{12} \rfloor + 1) > 0$.

Proof:

$$K = 4s$$

$$s := K/4 \in \mathbb{Z}_{>0}$$

$M_{4s}(\Gamma_1)$ has the following basis:

$$E_4^s = 1 + 240s \cdot e^{2\pi i z} + \dots$$

$$E_4^{s-3} \cdot \Delta = e^{2\pi i z} + \dots$$

$$E_4^{s-6} \cdot \Delta^2 = e^{4\pi i z} + \dots$$

;

$$E_4^{s-3t} \cdot \Delta^t = e^{t \cdot 2\pi i z} + \dots$$

$$t = \lfloor \frac{K}{12} \rfloor = \lfloor \frac{s}{3} \rfloor$$

It is easy to see from this basis that the extremal modular form is unique.

Set $q = e^{\pi i z}$ and $C := C_f(t+1)$. $s = s_0 + 3t$

We have $f = 1 + C \cdot q^{t+1} + O(q^{t+2})$.

Notations: $s = \frac{k}{4}$, $t = \lfloor \frac{s}{3} \rfloor$, $s = 3t + s_0$ for some $s_0 \in \{0, 1, 2\}$.

Claim:

$$\star \quad C = \frac{t+s_0/3}{t+1} \cdot \text{coefficient}_{q^{-1}} \left[\frac{\frac{d}{dq}(E_4^{-3})}{E_4^{s_0} \cdot \Delta^{t+1}} \right] \text{Laurent series in variable } q$$

Claim implies that $C > 0$.

$$E_4 = 1 + \sum C_{E_4}(n) q^n, \quad C_{E_4}(n) > 0$$

$$\frac{d}{dq}(E_4^{-3}) \cdot E_4^{-s_0} = \underbrace{3 \cdot \frac{d}{dq} E_4 \cdot E_4^{2-s_0}}_{\geq 0} \quad \text{this function has positive coefficients in } q\text{-expansion}$$

$$\frac{1}{\Delta} = \bar{q}^{-1} \left(\prod_{n=1}^{\infty} (1 - q^n)^{-1} \right)^{24} = \bar{q}^{-1} \left(\prod_{n=1}^{\infty} (1 + q^n + q^{2n} + \dots) \right)^{24}$$

Therefore $C > 0$

Proof of the claim \star :

We have

$$f = E_4^s + \alpha_1 \cdot E_4^{s-3} \cdot \Delta + \alpha_2 E_4^{s-6} \cdot \Delta^2 + \dots + \alpha_t \cdot E_4^{s-3t} \cdot \Delta^t$$

recall: $s = s_0 + 3t$

$$f = E_4^{s_0} \left(\frac{E_4^{3t}}{\Delta^t} + \alpha_1 \frac{E_4^{3(t-1)}}{\Delta^{t-1}} + \dots + \alpha_t \right) \Delta^t$$

$$j = \frac{E_4^3}{\Delta} \quad E := E_4^3 \quad P(x) = x^t + \alpha_1 x^{t-1} + \dots + \alpha_t$$

We can write the extremal modular form f as

$$f = E_4^{s_0} \cdot \Delta^t \cdot P\left(\frac{E}{\Delta}\right) = E_4^{s_0} \cdot \Delta^t \cdot P(j)$$

recall: $f = 1 + C \cdot q^{t+1} + \underline{O}(q^{t+2})$

$$P(j) E_4^{s_0} \cdot \Delta^t = 1 + C \cdot q^{t+1} + \underline{O}(q^{t+2}) \Rightarrow P(j) = \frac{1}{E_4^{s_0} \cdot \Delta^t} + C q + \underline{O}(q^2)$$

Recall from the last slide: $P(j) = \frac{1}{E_j^{s_0} \cdot \Delta} + Cj + \mathcal{O}(j^2) \quad (\textcircled{2})$

We have: $E_j = 1 + \mathcal{O}(j)$, $\Delta = j + \mathcal{O}(j^2)$, $j = \frac{E_j^3}{\Delta} = \bar{q} + \mathcal{O}(1)$

We make the change of variables $w = \frac{1}{j(q)}$ $w = q + \mathcal{O}(q^2)$

we have: $E_j(w) = 1 + \mathcal{O}(w)$, $\Delta(w) = w + \mathcal{O}(w^2)$, $j = \frac{1}{w}$

Now (2) implies

$$\frac{1}{E_j^{s_0}(w) \cdot \Delta^t(w)} = \underbrace{P\left(\frac{1}{w}\right) - C \cdot w + \mathcal{O}(w^2)}_{\text{Laurent expansion with respect to the variable } w}.$$

This identity allows us to compute C as a residue of a meromorphic differential:

$$\Rightarrow -C = \frac{-1}{2\pi i} \operatorname{res}_{w=0} \left[\frac{1}{E_j^{s_0}(w) \Delta^t(w)} \frac{dw}{w^2} \right].$$

A final step is to make the change of variables $w \mapsto q$

We recall that for a meromorphic differential $\Omega = F(z)dz$

$$\text{Res}_{z=0}(\Omega) = -2\pi i \text{ Coefficient}_{z^1}(F(z))$$

for any holomorphic coordinate z in a nbh of 0.

We have

$$\frac{1}{E_4^{s_0}(\omega) \Delta^t(\omega)} \frac{d\omega}{\omega^2} = \frac{\frac{dw}{dq} w^{-2}}{E_4^{s_0}(q) \Delta^t(q)} dq$$

Now we make the final computation and show that

$$\text{res}_{q=0} \left[\frac{\frac{dw}{dq} w^{-2}}{E_4^{s_0}(q) \Delta^t(q)} dq \right] = \text{res}_{q=0} \left[\frac{\frac{d}{dq}(E_4^3)}{E_4^{s_0} \cdot \Delta^{t+1}} \right]$$

$$\mathcal{C} = -\text{Res}_{q=0} \left[\frac{1}{E_4^{s_0} \Delta^t} \frac{d\left(\frac{\Delta}{E_4^3}\right)}{\left(\frac{\Delta}{E_4^3}\right)^2} \right] \quad \text{Set } r = \frac{s_0}{3}$$

$$E_4^{-s_0+6} \bar{\Delta}^{t-2} \frac{(d\Delta \cdot E - \Delta \cdot dE)}{E^2} = E^r \bar{\Delta}^{t-2} (d\Delta \cdot E - \Delta \cdot dE)$$

$$= \text{res}_{q=0} (E^{-r+1} \bar{\Delta}^{t-2} d\Delta - E^r \bar{\Delta}^{t-1} dE)$$

Recall that for a meromorphic function F we have $\text{res}(dF) = 0$.

$$0 = \text{res} [d(E^{-r+1} \bar{\Delta}^{t-1})] = \text{res} [(-r+1) E^{-r} \bar{\Delta}^{t-1} dE + (-t+1) E^{-r+1} \bar{\Delta}^{t-2} d\Delta]$$

$$\text{res}_{q=0} (E^{-r+1} \bar{\Delta}^{t-2} d\Delta) \stackrel{\Downarrow}{=} \text{res}_{q=0} \left(\frac{1-r}{t+1} E^{-r} \bar{\Delta}^{t-1} dE \right)$$

$$\mathcal{C} = \text{Res}_{q=0} \left(-\left(\frac{1-r}{t+1} - 1\right) E^{-r} \bar{\Delta}^{t-1} dE \right)$$

this proves the claim \star and finishes the proof \blacksquare

Packing density of extremal lattices.

Let $\mathcal{N} \subset \mathbb{R}^d$ be an extremal lattice

Then

$$\bigcup_{\ell \in \mathcal{N}} B(\ell, \sqrt{\lfloor \frac{d}{24} \rfloor + 1})$$

Euclidean balls with center and radius

$$\text{packing density} := \frac{\text{volume of balls}}{\text{volume of the space}} = \frac{\text{vol}(B(0, \sqrt{d}))}{\text{vol}(\mathbb{R}^d / \mathcal{N})} \approx$$

$$\text{by Stirling} \quad \approx (\pi e / 24)^{d/2 + \overline{o}(d)} \approx 2^{-0.745d + \overline{o}(d)}$$

The sphere packing constant $\Delta_d := \sup_{\mathcal{B} \subset \mathbb{R}^d} \Delta_{\mathcal{B}}$

Minkowski - Hlawka bound

$$\Delta_d \geq 2^{-d + \bar{O}(d)}$$

extremal lattices

$\leftarrow 2^{-0.745d + \bar{O}(d)}$

Kabatianski - Levenshtein bound

$$\Delta_d \leq 2^{-0.599d + \bar{O}(d)}$$

Theorem (Mallows-Odlyzko-Sloane)

There are only finitely many non-isomorphic extremal even unimodular lattices

This beautiful proof is beyond the scope of our course
Idea of the proof:

Let $f_k \in M_k(\Gamma_1)$ be the extremal modular form

$$f_k = 1 + C_k q^{\lfloor \frac{k}{12} \rfloor + 1} + \tilde{C}_k q^{\lfloor \frac{k}{12} \rfloor + 2} + \dots$$

$$\tilde{C}_k < 0 \quad \text{for } k \gg 0.$$

$$k > 2000$$
$$d > 4000$$