
Extremal lattices
.



Extremal lattices
Theorem (Siegel) Let ILCIRd be an even unimodular

lattice. Then the tenth tin ofthe shortest non-zero

vector of12 satisfies:

Ein 2(4)+ 2.

Definition:An even unimodular lattice ILCIR"
is called extremal ifthis bound is attained, i.e.

Sin =22) +2.



The ball with center and radius o

B(x,r): =[y-R4)(x - y)<w).
The sphere packing associated to a lattice (LCIRd

P: =e B C1, (i) &

X

The density of Ox ↑

Emin
↑ ↑

↑ ↑ ↑

Ap:=Bee ↑ ↑ ↑



Examples:

1d =8

tin = 2() +2 =2
Eg is an extremal lattice in dim 8.

2 d
=24

twin = 2.1 +2 =4

The unique extremal lattice in IR2*
is the Leech lattice.



Extremal modular forms
Letk=44>0K =d2

-hem:there exists a unique modular

form f =Mx(F) such thatits Fourier

coefficients satisfy!

((0) =1,(((1) =(f(z) =-.. =(j)(42) =0.
2TinZ

Recall: f(z) =E(n) e -

Thismodular form - is called the extremal
modular form.

Moreover, Ig (42) +1) >0.



k =4S Si =K/4 (71>0
Proof!
Mys(I) has the following basis:

Es =1 +2405. 2*iZ1....

E,-3.1 = exizt...e

E-*= C
4niz
+...

!
t. 2Tiz

Est. t =
e +...

t =L1) =(3)
It is easy to see from this basis thatthe extremal

modular form is unique.



ziz
Set 9 =e and Ci =cj(t +1).S =5o+st

We have f
=1 + 2.qt+1 +1(qt+2).

Notations:s=4,t =(5), 5 =3t +so for some sot 40,1,23.

t +50/3
Claim:

c = -coefficient,( Laurent series

t +1

Claim implies that2 >0.
in variable g

Ey =1 +[[(,(n)qn,CE,(n) > 0

afEY). E, =E,thisfunction has positive
coefficients in q-expansion

- 124 ↳

5 =q(,(1 - 94) ( =g'(,(1 +9"+q24...))
Therefore 2 >0



Proof of the claim:

We have
S S-3

f =Ep +2Ey.A +dEy+... +4E.
recall! S =So+ 3t

6 = Eso)E+E +...+x)
j =E4 E: =E, P(X) =x=x, x...+d=
We can write the extremal modular form of as

f =E?..P(E) =E,.*.P(j)
t+ 1

recalli f =1 +e.g
+0(qt

+

2)

P(j)E,.* =1 +(.qt++0(q+
+

) =P(j) =255t +(q +0(q2)



Recall from the last slide:P(j) =E,.t+(q +(q2) (0)

We have:Er 1assq.ez=q +119)
we have:Ey1) =1+1(wt, A(w) =w+(w), j =F

1

Now (C) implies
1

E,w).Yw)
-n+1(2)
Laurent expansion with respect to the variable er.

This identify allows us to compute (as a residue

ofa meromorphic differential:

- - =resw=o[w].



A final step is to make the change ofvariables with

We recall that for a meromorphic differential -2 =F(z)dz

Res (-1) = -25Coefficient El (F(z))z=0

for any holomorphic coordinate ain a nbh of0.

We have
de

(w)Bt(w) =anda
Now we make the final computation and show that

res

so(ada] =>

resq =0[



C = -Resq-o/gt)E Set r= S

E,jt-2 (dD. E-D. dE) = E5t-2(dA.E-A.dE)Er

-r+1⑦resqo(E *dB - EtdE)
Recall that for a meromorphic function f we have res(dF) =0.

-r+1 - t -2

0 =res[d(E*,
t

-1)] =res[(-r+1) Eg*dE +(-t -1) EAdB]
#

resq=(E*;
+-

2dA) - resq0Et-dE
C =Res

this proves
toa)Erde)finishes the proof I



Packing density of extremal lattices .

Let JL C IRD be an extremal lattice

then U Bce
>
LEFT )

een q •\#
Euclidean balls with center and radius

packing density : = "kme°fba"s- =

voe (1319%1)
volume of the space ¥1M

~~

by Stirling
I µe/zy)dk+°Td ) y 2-0.745

dtocd)



The sphere packing constant Ddi= sup Dp
PCIRD

Minkowski - Hlawka bound

Hd 3 Id
-10cal)

extremal lattices

← 2-0.7454 told)

Kabatianski - Levenstein found

d f 2-0.5991+5 (d)



Theorem ( Mallows - Odlyzko - Sloane)
There are only finitely many

non - isomorphic
extremal even unimoduear lattices

This beautiful proof is beyond the scope of our course

Idea of the proof :

Let fk c- Milk ) be the extremal modular form

fk = 1 -1 Ckqt#
+ '

+ §<qL¥J -12+ l l s

k > 2000¥0 for K → O
'

d > 4000


